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Abstract—Imitation learning is a promising approach for
enabling generalist capabilities in humanoid robots, but its scaling
is fundamentally constrained by the scarcity of high-quality expert
demonstrations. This limitation can be mitigated by leveraging
suboptimal, open-ended play data, often easier to collect and
offering greater diversity. This work builds upon recent advances
in generative modeling, specifically Flow Matching, an alternative
to Diffusion models. We introduce a method for estimating the
extremum of the learned distribution by leveraging the unique
properties of Flow Matching, namely, deterministic transport and
support for arbitrary source distributions. We apply this method
to develop several goal-conditioned imitation and reinforcement
learning algorithms based on Flow Matching, where policies
are conditioned on both current and goal observations. We
explore and compare different architectural configurations by
combining core components, such as critic, planner, actor, or
world model, in various ways. We evaluated our agents on the
OGBench benchmark and analyzed how different demonstration
behaviors during data collection affect performance in a 2D
non-prehensile pushing task. Furthermore, we validated our
approach on real hardware by deploying it on the Talos
humanoid robot to perform complex manipulation tasks based
on high-dimensional image observations, featuring a sequence of
pick-and-place and articulated object manipulation in a realistic
kitchen environment. Experimental videos and code are available
at: https://hucebot.github.io/extremum_flow_matching_website/

I. INTRODUCTION

In recent years, imitation learning has reemerged as a

powerful approach to solving complex manipulation tasks

on real robots [1]–[3]. Unlike reinforcement learning, which

typically relies on simulation and sim-to-real transfer, imitation

learning bypasses the need for simulation, reward engineering,

and domain adaptation by directly learning behaviors from

teleoperated demonstrations (i.e., behavior cloning). This

allows policies to handle environments that are difficult to

simulate, such as dexterous or nonprehensile manipulation

involving complex contacts, friction, and interactions with

articulated, soft, or deformable objects. Moreover, end-to-end

training on pixel-based inputs makes it possible to train

policies for a wide range of tasks without any feature

engineering. However, imitation learning comes at the cost of

requiring large and diverse demonstration datasets, a process

that is slow and resource intensive to collect on real hardware.
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Figure 1. Goal conditioned policy using Extremum Flow Matching for manip-
ulation from play demonstrations on the Talos humanoid robot (bottom right).
The policy takes the current and goal images as input and outputs the robot’s
command trajectory (top). With Flow Matching, the flow vector field (bottom
left) continuously and deterministically transforms a 1D source distribution
into a target distribution. Since flow paths do not intersect, the boundaries of
a uniform source distribution are mapped to the minimum and maximum of
the target distribution’s support. Using this idea, Extremum Flow Matching
addresses the problem of optimality by selecting the shortest path to the goal.

As the aim of this line of research is to build fully generalist

policies capable of solving various tasks, it becomes essential

for users to specify desired goals. This need has driven the

rise of goal-conditioned imitation learning [4], [5]. Goals can

be provided in various forms, through discrete labels (which

require costly dataset labeling and segmentation), goal images

[6], [7], or, more recently, natural language instructions [8]

via vision-language-action models [3].

These recent advances in machine learning coincide with the

rapid development of next-generation humanoid robot hardware

[9], [10], driven by a similar long-standing ambition: to create

generalist robotic platforms that combine versatile locomotion

and dexterous manipulation skills, multi-contact capabilities,

compact footprints suitable for constrained environments,

and human-like morphology adapted to operate within

human-centric spaces. The convergence of such hardware,

traditional model-based control, and scalable, multimodal

https://hucebot.github.io/extremum_flow_matching_website/
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learning frameworks, acting as high-level controllers and

planners, opens exciting new frontiers in humanoid robotics.

In this work, we learn challenging long-horizon manipulation

tasks in a realistic kitchen setting with a humanoid robot. As

illustrated in Fig. 1 (bottom right) and attached video, our

learning algorithms can generate motions combining grasping,

door opening/closing and tray pulling/pushing using the Talos

humanoid robot, all based on high-dimensional visual input.

Imitation learning typically relies on near-optimal

demonstrations focused on specific tasks to produce high-

quality policies. However, scaling data collection under these

constraints is costly and impractical. To overcome this, recent

work has focused on learning from play datasets [6], [11]–[13],

in which demonstrations freely explore the environment

through open-ended interactions without pursuing specific

goals. This approach provides broader state-action coverage,

greater variability, and makes data collection far more scalable

and convenient, opening the door to large-scale, unstructured

datasets collected from diverse sources. By conditioning

on goals, it becomes possible to train from such play data,

removing the need for carefully curated demonstrations.

However, two major challenges remain (see Fig. 2): actions

in play data are often suboptimal for specific tasks, and full

trajectories from an initial state to a distant goal are rarely

demonstrated. Although fragments of optimal behavior exist

across episodes, they are not stitched into a complete solution.

Optimality can be addressed with purely supervised learning

techniques by conditioning on returns [14]. While such methods

have shown interesting empirical performance, they lack a

principled mechanism for stitching partial trajectories toward

long-horizon goals. In contrast, offline reinforcement learning

[15]–[19] explicitly tackles both optimality and stitching by

learning value functions via dynamic programming.

These recent advances in imitation learning have been

largely driven by progress in generative modeling, particularly

Diffusion models [20], [21] and Flow Matching [22].

Generative methods have proven decisive because they

enable learning and sampling from the entire distribution,

effectively handling multi-modal distributions. In contrast,

traditional supervised learning often averages over non-convex

distributions, leading to inaccurate predictions. Additionally,

generative models can produce high-dimensional outputs,

making them well-suited for generating full trajectories in

planning. Addressing stitching capabilities, the application

of Diffusion for long-term trajectory planning is an actively

studied research direction [18], [19], [23]–[26].

Diffusion and flow-based methods have been unified within

a common theoretical framework based on optimal transport

theory [27], [28], where Diffusion corresponds to the stochastic

formulation and Flow Matching to the deterministic one. Flow

Matching has emerged as an alternative to Diffusion and has

been applied to imitation and reinforcement learning [29]–[32]

as well as Vision-Language-Action models [3], primarily due

to its faster inference times, a critical advantage for real-time

robotic applications.

Specific to offline reinforcement learning, recent work
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Figure 2. Imitation and offline reinforcement learning from play data face
two key challenges: Optimality (left) – selecting actions that lead to the
shortest possible paths, and Stitching (right) – combining sub-trajectories that
originate from distinct demonstrated episodes to reach long-horizon tasks.

exploited the unique properties of Flow Matching to address

the key challenge of evaluating the critic value V and

action-value Q functions. [33] focused on improving the

guidance of the generative process, while Flow Q-Learning

[34] introduced a distillation mechanism that integrates Flow

Matching into reinforcement learning algorithms without

requiring simulating the flow during training.

Concurrently with this line of work, we exploit the unique

advantages of Flow Matching over Diffusion – namely, its

deterministic inference and its ability to handle arbitrary

source distributions – to address the reward maximization

problem in learning the critic for reinforcement learning.

Contributions: Our key contributions are threefold:

• To address the challenge of optimality and learn critic

in offline reinforcement learning algorithms, we propose

a method called Extremum Flow Matching, which

estimates distributional bounds using Flow Matching and

conditioning on returns.

• We apply this method to design several goal conditioned

imitation and offline reinforcement learning agents based

on Flow Matching.

• We conduct extensive evaluations, comparing these agents

against the state of the art using the OGBench benchmark,

analyzing the impact of dataset collection behaviors, and

validating performance through real-world experiments

on the Talos humanoid robot (see attached video).

II. BACKGROUND

A. Flow Matching

Flow Matching is a generative method that enables to

model and then sample from complex, potentially multi-modal

probability distributions. It does so by learning a deterministic

and continuous transformation from a simple source distribution

x
src∼P src to a target distribution x

dst∼Pdst, where both x
src

and x
dst lie in the same space R

n. The flow’s vector field f ,

typically parameterized by a neural network, is trained using

supervised learning via the Flow Matching loss Lflow without

requiring simulation of the full integration process of the flow:

xt=(1−t)xsrc+txdst, t∼U(0,1)

Lflow=
∥

∥f(xt,t,c)−(xdst−x
src)

∥

∥

2

2

(1)

where t∈R represents the interpolation, i.e. the progress of

the transport from the source to the target distribution, and is
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sampled uniformly from the interval [0,1]. The vector c∈R
m

is an optional conditioning variable that allows modeling a

conditional target distribution P dst(x|c).
During inference, novel samples from the target distribution

x̃
dst are generated by first sampling a point x0 from the source

distribution P src, and then integrating the learned flow from

t= 0 to t= 1. This integration is typically performed using

Euler integration:

x0∼P src, xt+∆t=xt+∆tf(xt,t,c), x̃
dst=x1 (2)

In the remainder of this paper, we denote the generative

process F conditioned by c as follows: the model definition

and training process is expressed as F : P src|c 7→ x
dst.

Sampling-based inference is written as x̃
dst=F (P src|c), where

a point is sampled from the source distribution P src and

then transformed through the flow. Deterministic inference is

denoted by x̃
dst =F (x0|c), where given a specific point x0,

only the flow’s integration from source to target is computed.

B. Trajectory Dataset Formalism

In this work, we leverage the generative method Flow

Matching to devise novel goal conditioned imitation and offline

reinforcement learning algorithms. Rather than using the clas-

sical Markov Decision Process framework, where transitions

are represented as (ok,ak,ok+1) and only consider immediate

actions and subsequent observations, we adopt a trajectory-

based formalism that captures sequences of observations and

actions across episodes. Demonstrations are collected through

teleoperation of the robot across multiple episodes, with

each episode comprising a full trajectory of observations and

corresponding actions. The set of demonstrated episodes is fixed

and used in an offline reinforcement learning setting, where no

further interaction with the environment occurs during training.

From the demonstrated episodes, we construct a trajectory-

based training dataset composed of tuples of the form

(ok,τ
o
k ,τ

a
k ,d,g), where k∈N denotes the time step within an

episode, ok is the observation at time step k, τ o
k =ok:k+LoSo:So

is the sub-sampled trajectory of future observations starting

from k of length Lo, τ a
k =ak:k+LaSa:Sa

is the sub-sampled

trajectory of future actions starting from time step k of length

La, Lo and La∈N specify respectively the lengths of the future

observation and action trajectories, So and Sa ∈ N specify

respectively the sub-sampling strides of future observation

and action trajectories. Akin to Hindsight Experience Replay

[35], the goal observation g=ok+d is sampled from the same

episode, d time steps after the current step k. The distance

offset d∈N is drawn uniformly as d∼U(0,Lg) where Lg∈N

is the maximum goal horizon. Note that, when there is no

ambiguity, the time step k is omitted for clarity.

In this formalism, the return of an episode starting from

observation ok and reaching the goal g is defined as the

time-step distance d, which the agent aims to minimize.

In this work, we also assume that observations and goals

lie in the same space, although prior work [3], [6]–[8] has

demonstrated that goals can be encoded in alternative latent

spaces or modalities, such as natural language.
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Figure 3. Comparison between Expectile Regression and Extremum Flow
Matching for estimating the minimum and maximum of a one-dimensional
multi-modal conditional distribution. Extremum Flow Matching allows
selecting the parameter ϵ at inference and provides tighter estimates.

III. METHOD

A. Problem Formulation

Given a dataset of unstructured play demonstrations

{(o,τ o,τ a,d,g)i}, our objective is to learn a policy π :o,g 7→
τ
a that maps the current observation o and goal observation g

to the next actions τ a, such that the agent progresses toward the

goal. However, achieving optimality (see Fig. 2) is challenging

because the dataset contains both efficient and inefficient trajec-

tories: some action sequences lead directly to the goal, while

others involve long detours. The distribution P(τ a,d |o,g) thus

includes both optimal actions (associated with low d values,

representing more direct paths) and suboptimal ones (associated

with higher d values). The minimal distance between o and g

within the dataset is given by minP(d |o,g). To follow such

shortest paths, the policy should condition on this minimal

distance and select actions from the corresponding conditional

distribution: P(τ a|o,g,d=minP(d|o,g)). In this sense, the

problem of optimality reduces to learning and approximating

the minimum (or maximum, in a reward-based formulation)

of a conditional distribution.

Recent offline reinforcement learning methods [15]–[17]

have addressed this challenge of minimizing or maximizing

conditional distributions using Expectile Regression [15], [36].

In this work, we propose an alternative approach based on Flow

Matching, which enables the estimation of the lower and upper

bounds of a conditional or unconditional distribution learned

from offline data. Our method, along with recent work such

as [18], [19], is inspired by the integration of reinforcement

learning principles with conditioning on returns framework.

B. Extremum Flow Matching

One-Dimensional Distributions: Fig. 1 (bottom left)

illustrates the core concept of our approach. Flow Matching

learns a transformation that is both continuous and

deterministic, governed by a vector field whose integrated

paths do not intersect. As a result, in the one-dimensional

case, the minimum and maximum of the source distribution’s

support are mapped to the minimum and maximum of the

target distribution. Moreover, Flow Matching offers a key
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Figure 4. Extrema of unconditioned 2D distributions. Red samples illustrate
how extremal values along the z axis are mapped from the uniform source
distribution (top) to the target distribution (bottom). The baseline approach
using a single Flow Matching model (left) is compared to the proposed
conditional model (right) described in Equations (3) and (4). Proposed
Extremum Flow Matching using a conditional model enables sampling the
target distribution at the minimum and maximum of the z axis.

advantage over Diffusion-based methods: it allows the use of

arbitrary source distributions, not just Gaussian ones. For this

reason, we opt for a uniform distribution as the source which

is not only easy to sample from but also provides a closed

support with well-defined minimum and maximum bounds.

More formally, using the notation introduced earlier,

a one-dimensional x(c) ∈ R distribution conditioned on

c ∈ R
m is learned by training the Flow Matching model

F :ϵ∼U(0,1)|c 7→x(c), where U(0,1) is the one-dimensional

uniform distribution between 0 and 1. The minimum and

maximum bounds are then inferred as F (ϵ = 0|c) and

F (ϵ=1|c), respectively.

Fig. 3 shows a comparison between our Flow Matching

approach and Expectile Regression on a one-dimensional

conditional and multi-modal distribution. Expectile Regression

estimates the bounds of the distribution by training the model

g using an asymmetric supervised loss, defined as Lϵ
expectile=

Lϵ
2(x − g(c)) where Lϵ

2(u) = |ϵ − 1(u < 0)|u2. Expectile

Regression approximates the minimum and maximum of the

target distribution, respectively by setting ϵ=0.01 and ϵ=0.99.

While both methods perform well, Extremum Flow

Matching, in contrast to Expectile Regression, learns to model

the entire distribution, allowing the choice of ϵ at inference

time rather than fixing it during training. We observed that Flow

Matching tends to provide tighter estimates of the distributional

bounds. Expectile Regression, on the other hand, generally

yield more conservative approximations of the minimum and

maximum, especially on multi-modal distributions.

Multi-Dimensional Distributions: In the multi-dimensional

setting where x∈R
n, we consider the problem of minimizing

or maximizing the target distribution along a specific

dimension z∈R. We decompose the space as x=(z,y) with

z∈R and y∈R
n−1. Formally, the objective is to sample from

the conditional distribution P(z,y|z=max P(z)).
Since a distribution P can be decomposed as P(x) =

P(z,y) = P(z)P(y|z), we propose to address the objective

by training the following two models using Flow Matching:

F1 :U(0,1) 7→z, F2 :P
src|z 7→y, (3)

where P src is an arbitrary source distribution that is easy to

sample from for y∈R
n−1.

At inference time using these two generative processes, a

sample x̃=(z̃,ỹ) corresponding to the minimization or max-

imization of the distribution along the z axis is obtained with:

z̃=F1(0) or F1(1), ỹ=F2(P
src|z̃). (4)

This approach is illustrated in Fig. 4 (right). In contrast,

the baseline with the single model F (U(0,1),U(0,1)) 7→(z,y),
shown on the left, demonstrates that without decomposing

the generative process into two separate models, the extremal

values along the z axis in the source distribution are not reliably

mapped to the corresponding extrema in the target distribution.

C. Goal Conditioned Agents using Extremum Flow Matching

We propose to use Extremum Flow Matching to devise

a family of goal conditioned imitation learning and offline

reinforcement learning algorithms. As pointed out in [19],

imitation learning and reinforcement learning agents are

typically composed of multiple interacting components,

which can generally be grouped into four main model types:

Critic : • 7→ d estimates the expected return (e.g., distance

in time-step to goal) given an observation, goal, and/or action,

Planner : • 7→ τ
o [23]–[26] generates a single sub-goal or

a trajectory of future observations that aims to reach the goal,

Actor : • 7→ τ
a produces a single action or a trajectory of

actions, World : τ a,• 7→ τ
o (world model) [37], [38] predicts

the environment’s dynamics by generating future observations

from a trajectory of actions and current observation.

Different algorithms make use of some, but not necessarily

all, of these components. As shown in recent works [17],

[19], [38], there are numerous possible combinations of these

modules. However, the best performing configuration appears

to be highly task and dataset dependent, and understanding

the effect of these dependencies is still an open question. As

noted by [17], a key advantage of decomposing the agent

into modular components is that certain models, such as

the Planner, can be trained without action labels, potentially

enabling the use of large-scale datasets.

To further investigate and compare the influence of these

different components, we introduce the set of agents described

in Table I. Here, P src
τa

and P src
τo

denote arbitrary source

distributions for action and observation trajectories, and τ
o
−1

refers to the last observation of the trajectory τ
o. Note that

by setting the trajectory lengths La or Lo to 1, this formalism

includes and generalizes a wide range of previously proposed

algorithms that either predict only the immediate next action

or plan for a single sub-goal.

The agent FM-GC is a simple imitation learning policy

baseline trained using Flow Matching. While it is conditioned
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Table I
PROPOSED FLOW MATCHING AGENTS

Name Training Inference Comment

FM-GC Actor :Psrc
τa

|o,g 7→τa τ̃a=Actor(Psrc
τa

|o,g) Baseline goal conditioned with Flow Matching

FM-AC Critic :U(0,1)|o,g 7→d

Actor :Psrc
τa

|o,g,d 7→τa
d̃=Critic(0|o,g)
τ̃a=Actor(Psrc

τa
|o,g,d̃)

Actor conditioned, inspired by GCIQL [15],
[17]

FM-PC Critic :U(0,1)|o,g 7→d

Planner :Psrc
τo

|o,g,d 7→τo

Actor :Psrc
τa

|o,τo 7→τa

d̃=Critic(0|o,g)
τ̃o=Planner(Psrc

τo
|o,g,d̃)

τ̃a=Actor(Psrc
τa

|o,τ̃o)

Planner conditioned, inspired by HIQL [17]

FM-PS Critic :U(0,1)|o,g 7→d

Planner :Psrc
τo

|o 7→τo

Actor :Psrc
τa

|o,τo 7→τa

T o={τo|τo∼Planner(Psrc
τo

|o)}
τ̃o=argmin

τ
o∈To

Critic(0|τo
−1

,g)

τ̃a=Actor(Psrc
τa

|o,τ̃o)

Planner rejection sampling, inspired by
Diffusion Veteran [19]

FM-AS Critic :U(0,1)|o,g 7→d

Actor :Psrc
τa

|o 7→τa

World :Psrc
τo

|o,τa 7→τo

Ta={τa|τa∼Actor(Psrc
τa

|o)}
τ̃a=argmin

τ
a∈Ta

Critic(0|τo
−1

,g)

where τo=World(Psrc
τo

|o,τa)

Actor rejection sampling with world model

on the goal to generate action trajectories, it does not take

the return d into account. As a result, it lacks the notion of

optimality and is theoretically incapable of stitching together

partial trajectories across episodes to reach long-horizon goals.

Both FM-AC and FM-PC use the conditional scheme

introduced in Section III-B to estimate distribution extrema

and address multi-dimensional distributions. They first train

a Critic to model the distribution of returns d given the

current observation and goal. The optimal return (i.e., shortest

time-step distance to goal) is inferred via Critic(0|o,g) and

used to condition the Actor in FM-AC, or the Planner in

FM-PC. In FM-PC, the Actor plays the role of an inverse

dynamics model, generating actions that realize the Planner’s

predicted short-horizon observation trajectory.

These two agents represent Flow Matching counterparts to

Return Conditioned Reinforcement Learning methods [14],

[18], with a key distinction: prior approaches typically use

hand-tuned, extreme return values (e.g., very low d or high

reward) as conditioning inputs, without estimating true optimal

return based on observation and goal. This often pushes the

model into out-of-distribution regions, relying on the network’s

ability to extrapolate. For instance, in 2D maze tasks, overly

aggressive return values can lead to unrealistic plans, such as

crossing walls. In contrast, our method estimates returns directly

from the distribution seen in the training dataset, ensuring that

the values used for conditioning are in-distribution.

Instead of conditioning on the returns, agents FM-PS and

FM-AS follow the rejection sampling strategy benchmarked in

Diffusion Veteran [19]. In FM-PS, the Planner, not conditioned

on the goal, generates a set T o of candidate future observation

trajectories from the current observation. At inference, the

Critic evaluates the final observation τ
o
−1 of each candidate

trajectory, and the one closest to the goal is selected. The

Actor, trained as an inverse dynamics model, then produces the

corresponding actions. Conversely in FM-AS, the Actor is used

to samples a set T a of candidate action trajectories conditioned

only on the current observation. These are passed through a

learned World Model to predict resulting observations, and

the Critic selects the best plan based on proximity to the goal.

D. Reinforcement Learning Recursive Bootstrap

While conditioning on returns or using rejection sampling

can theoretically address action optimality, these methods are

insufficient for enabling agents to stitch together trajectory

segments across episodes. An ability that is essential for

solving long-horizon tasks that are not fully demonstrated

in the dataset. For each Critic-based agent in Table I, we

define two variants: no-RL, and use-RL. The use-RL variant

augments the training batch using the following procedure:

for each tuple (o,τ o,τ a,d,g) from the batch, an observation

g
′ is uniformly sampled from the dataset, and the augmented

tuple is added to the batch:

(o,τ o,τ a,d+Critic(ϵg|g,g
′),g′),

with ϵg∼U(0,rg),rg∈ [0,1],
(5)

using the Critic model being trained. The term

d+ Critic(ϵg|g,g
′),g′) implements a Bellman-style backup

by stitching together the returns of two trajectory segments:

one from o to g with cost d, and another from g to g
′

with estimated return provided by the Critic. This effectively

augments the return distribution with compositional trajectories,

a structure that Flow Matching handles naturally. The additional

goal g′ can originate from a different episode [18] than o and

g, such that the Critic is trained to estimate the return between

any pair of observations in the dataset. The scaling factor

rg∈ [0,1] serves as a regularization hyperparameter to mitigate

underestimation bias (overestimation of rewards) by introducing

suboptimal return estimates into the distribution preventing

collapse. The training and inference pseudocode for agent

FM-AC-use-RL using high-dimensional image observations

is detailed in Algorithm 1. To further stabilize training, we

also use the double networks trick [39] on the Critic model.

IV. EXPERIMENTAL RESULTS

A. Comparison with OGBench Benchmark

We first evaluated and compared our proposed agents across

a diverse suite of simulated locomotion and manipulation envi-
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no-RL use-RL OGBench

OGBench Dataset FM-GC FM-AC FM-PC FM-PS FM-AS FM-AC FM-PC FM-PS FM-AS GCBC GCIVL GCIQL QRL CRL HIQL

pointmaze-large-navigate-v0 66 60 60 31 29 89 89 67 64 29 45 34 86 39 58
pointmaze-large-stitch-v0 39 37 23 15 14 40 40 42 44 7 12 31 84 0 13
antmaze-large-navigate-v0 7 5 5 15 1 7 22 34 15 24 16 34 75 83 91

antmaze-large-stitch-v0 1 0 0 6 3 0 3 18 7 3 18 7 18 11 67

cube-double-play-v0 69 32 13 22 14 2 1 12 16 1 36 40 1 10 6
scene-play-v0 53 52 32 42 43 7 16 40 55 5 42 51 5 19 38
puzzle-4x4-play-v0 1 0 3 22 48 0 1 14 38 0 13 26 0 0 7

Figure 5. Comparison of our proposed agents on the OGBench benchmark [40]. We report the average of binary success rates (%) across state-based
observation datasets of intermediate difficulty. For each task, agents are evaluated on 5 goals, and replicated 20 times. We include for reference results
from state-of-the-art algorithms reported in [40].

Algorithm 1 FM-AC-use-RL with image observations

1: Training:

2: Input: Training dataset
3: Initialize Encoder, Critic and Actor models
4: while not converged do

5: for (o,τa,d,g) sampled from batch do

6: Sample observation g′ from the whole dataset
7: Encode observations into latent spaces:

lo=Encoder(o), lg=Encoder(g), lg′ =Encoder(g′)
8: Augment batch with (lo,τa,d+Critic(ϵg |lg ,lg′ ),lg′ ) (5)
9: end for

10: Update Encoder and Critic model to minimize Lflow (1)
with xsrc =U(0,1),xdst =d,c=(lo,lg)

11: Update Encoder and Actor model to minimize Lflow (1)
with xsrc =Psrc,xdst =τa,c=(lo,lg ,d)

12: end while

13: Return: Encoder, Critic and Actor models
14: Inference:

15: Input: current o and goal g observations
16: Encode observations into latent spaces:

lo=Encoder(o), lg=Encoder(g)
17: d̃=Critic(0|lo,lg) using flow integration (2)

18: τ̃a=Actor(Psrc
τa

|lo,lg ,d̃) using flow integration (2)
19: Return: action trajectory τ̃a

ronments using low-dimensional, state-based observations from

the OGBench benchmark [40]. OGBench is a recent project

specifically targeting offline reinforcement learning, where train-

ing and evaluation datasets highlight multi-goal, stitching and

combinatorial challenges. OGBench provides reference imple-

mentation and comparison of several state-of-the art algorithms.

Fig. 5 presents the performance of our agents alongside

several recent offline goal-conditioned reinforcement learning

algorithms, comparing GCBC [41], GCIVL and GCIQL

[15], [17], QRL [42], CRL [43], and HIQL [17]. Unlike our

approach, these baselines do not leverage generative methods

nor the trajectory-based formalism. All of our agents were

trained for 200k epochs using the same set of hyperparameters

across all tasks and agents. In contrast, the results reported

from OGBench were obtained with hyperparameters being

tuned for each task and baseline.

As observed in [40], no single method consistently

outperforms all others across every task. Our results reflect

this observation: while some of our agents achieve strong

performance on manipulation tasks, such as cube and puzzle

requiring combinatorial stitching, they are comparatively less

effective in certain locomotion tasks, especially antmaze given

fixed hypermarameters.

Dataset Expert Reach Goal

Dataset Play in Full Space Dataset Play in Partitioned Spaces

Figure 6. Planar pushing task in a maze (top left): the agent controls the
small blue circle via position commands to move and push the larger passive
red circle toward a corner of the maze, navigating around gray obstacle walls.
Three datasets are recorded from human demonstrations exhibiting different
behaviors. For each dataset, example episodes are shown, illustrating the motion
trajectories of the red circle, with the star marker indicating the final position.

B. Impact of Demonstration Behaviors

To further investigate these benchmark results, we studied the

impact on agent’s performance of demonstration behavior, i.e.

the strategy, style, or consistency with which humans performed

the task during data collection. We compared our agents on the

planar pushing task illustrated in Fig. 6 (top left), using three

datasets collected from human demonstrations with distinct be-

haviors. All agents were trained with identical hyperparameters

and evaluated on the same initial-goal observation pairs.

As shown in Fig. 6, each dataset reflect a different behavior:

In Expert Reach Goal dataset (46793 samples), each episode

demonstrates an optimal trajectory where the red circle is

pushed from a random initial state to one of the maze

corners, emphasizing goal directed expert behavior. In Play in

Full Space dataset (36661 samples), longer, exploratory play

episodes move freely the red circle throughout the maze without

targeting specific goals, capturing diverse but suboptimal be-
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FM-GC FM-AC-no-RL FM-PC-no-RL FM-PS-no-RL FM-AS-no-RL FM-AC-use-RL FM-PC-use-RL FM-PS-use-RL FM-AS-use-RL

0 20k 40k 60k 80k 100k
Training Epoch

Dataset Play in Partitioned Spaces Agent Expert Full Partitioned

FM-GC 96±5 65±4 47±5

FM-AC-no-RL 96±4 97±2 52±7

FM-PC-no-RL 99±2 91±3 62±5

FM-PS-no-RL 92±4 73±6 47±4

FM-AS-no-RL 34±8 82±6 49±5

FM-AC-use-RL 32±8 89±3 78±4

FM-PC-use-RL 68±21 89±4 90±3

FM-PS-use-RL 60±35 67±9 67±10

FM-AS-use-RL 42±18 77±7 68±5

Figure 7. Success rates of proposed agents across three datasets with varying demonstration behaviors. Performance is evaluated on the same set of 10
initial-goal observation pairs, averaged over 8 random training seeds and 4 runs per evaluation pair. The plots (left) show the evolution of success rates
during training, while the table (right) presents the final success rates with standard deviation.

haviors. In Play in Partitioned Spaces dataset (29087 samples),

episodes also consist of exploratory play but are confined to

one of the three maze regions, shown as dashed lines in Fig. 6

(bottom right), with no single trajectory spanning all regions.

This dataset highlights agents’ trajectory stitching abilities, as

reaching distant evaluation goals requires crossing all three

regions, a path that was never demonstrated in the dataset.

Evaluation results are shown in Fig 7. As expected, Expert

Reach Goal is the easiest dataset, followed by Play in Full

Space with sub-optimal demonstrations, and Play in Partitioned

Spaces, which is the most difficult due to the need for trajectory

stitching. No single agent consistently outperforms others

across all settings, aligning with findings in [40]. Notably,

using RL backups (Eq. 5) significantly degrades performance

on the expert dataset, slightly reduces it on full-space play, but

is crucial for solving partitioned-space play, where stitching

is required. The underlying cause of this trade-off remains

unclear and is a key direction for future research. On the expert

dataset, simple goal-conditioned imitation with Flow Matching

baseline performs comparably to more complex agents (without

RL backups). However, in the more challenging play datasets,

agents with Critics considering optimality outperform the

baseline. The agent FM-AS using a world model performed

poorly on the expert dataset regardless of whether RL backups

were used. Its performance consistently degraded over the

course of training, a phenomenon we plan to investigate further.

C. Vision-Based Manipulation with Talos Humanoid Robot

We further validated our method with high-dimensional

image observations on real hardware using the Talos humanoid

robot, featuring 24 degrees of freedom plus a gripper-equipped

hand. Talos is controlled via SEIKO whole-body admittance

controller1 based on Quadratic Programming optimization

[44]–[46], which receives Cartesian hand pose commands in

the robot’s world frame and computes joint position references

while maintaining balance constraints.

The robot interacts with a realistic kitchen environment as

shown in Fig 1 (bottom right), and Fig. 8 (left). Using one

hand, the robot picks up and places a red pot, opens and closes

an articulated door, and operates a pull-out tray. The pot is

placed either on the table or on the tray. Observations include

RGB images from a fixed external camera and proprioceptive

1SEIKO implementation: https://github.com/hucebot/seiko_controller_code
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Figure 8. Kitchen task setup for image-based experiments on the Talos
humanoid robot (left), and example of autonomous policy execution (right):
left-hand position (commanded and measured), gripper command (open=0,
close=1) and hand position error in world frame are displayed. The robot
grasps and pulls open the tray, lowers its hand to grasp the pot on the table,
places it on the tray and closes the tray by pushing it (see attached video).

data: measured and commanded hand positions and orientations.

The pot remains visible from the camera even when inside

the kitchen’s cabinet and when the door is closed. Images are

encoded using a ResNet-based small IMPALA encoder [47]

trained from scratch. Hand orientations are represented using

the 6D continuous representation [48]. The goal conditioned

policy takes the current and goal observations as input, defining

the desired state of the environment, and outputs a trajectory of

future actions, including hand position/orientation and gripper

commands. Demonstrations were collected via teleoperation

using a Vive pose tracking device, covering 32 minutes over

multiple episodes at 33Hz. Action trajectories are sub-sampled

at 11Hz (Sa=3) with a length of La=16 steps, resulting in tra-

jectories of 1.45s long. The policy runs on an external machine

with an NVIDIA GTX 1080 GPU, achieving about 0.14ms

inference time and recomputing trajectory updates every 0.8s.

During demonstrations, the human operator performed

unstructured play, manipulating the environment without a

fixed task or sequence, opening/closing the door and tray, and

moving the pot freely. After training, the policy is able to reach

specific visual goal observations from an initial observation.

One such rollout is shown in Fig. 8 (right) and Fig. 9: the

robot opens the tray, places the pot inside the kitchen, closes

the tray, and then closes the door to match the provided goal

https://github.com/hucebot/seiko_controller_code
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Figure 9. When conditioned on the current and desired goal images shown in Fig. 1 (top), the FM-AC-no-RL policy commands the Talos humanoid robot
to sequentially open the tray, pick up the pot from the table, place it on the tray, close the tray, and shut the door to reach the goal.

image. We compared qualitatively the three agents FM-GC,

FM-AC-no-RL, and FM-AC-use-RL. Consistent with the

results in Section IV-B, FM-AC-no-RL demonstrated the

best performance and was used to generate the accompanying

videos2. Real-world success rate reaches 30%, primarily due

to hand motion inaccuracies during critical phases like door

manipulation and object grasping, which require sub-centimeter

precision. The whole-body controller introduces slight hand

positioning errors (see Fig. 8 right bottom row) due to closed-

loop admittance control based on force-torque sensor feedback.

As the foot force-torque sensors tend to drift over time, these

errors are not always repeatable between demonstrations

and evaluations. Although these effects are measurable and

included in the proprioceptive observation, the policy does not

generalize well and adapt given the limited demonstration data.

V. LIMITATIONS

Compared to algorithms such as GCBC, GCIVL, GCIQL,

QRL, CRL, and HIQL implemented in OGBench, which do

not rely on generative models, our agents require significantly

more training time. This overhead is further increased when

using the RL backup variants, as the batch augmentation

procedure (Eq. 5) involves integrating the flow model to infer

the Critic, adding substantial computational cost.

In our comparison, we evaluated all proposed agents using

the same set of hyperparameters to enable a fair assessment of

their robustness to parameter finetuning. However, we did not

conduct a comprehensive exploration of hyperparameter sensi-

2Project webpage: https://hucebot.github.io/extremum_flow_matching_
website/

tivity, which may influence the relative performance rankings

on both the OGBench benchmark and the planar pushing task.

Regarding real-world deployment on the Talos humanoid,

the policy was not able to generalize well to out of distribution

cases, for instance, grasping the pot when it was positioned

differently from the training demonstrations. This limitation is

likely due in part to the small size of the training dataset, which

constrained the policy’s ability to learn robust generalization.

VI. CONCLUSION

We introduced a novel method, Extremum Flow Matching,

designed to estimate the extrema of a multivariate probability

distribution along a specific axis. This is made possible by

the unique property of Flow Matching to utilize a uniform

distribution as the source, combined with a conditioning

scheme analogous to conditioning on returns. Building on

this foundation, we proposed several imitation learning and

offline reinforcement learning agents based on Flow Matching,

varying in their internal architecture and module combinations.

Through simulation experiments, some of our agents

outperformed state-of-the-art baselines on specific tasks within

the OGBench benchmark, while underperforming on others,

mirroring the task-specific variability seen in existing methods.

Our findings reinforce that algorithm performance is highly

sensitive to the data collection policy, as datasets can exhibit

markedly different properties depending on the behavior used

to generate them. Understanding and mitigating this sensitivity

is crucial for developing more robust and generalizable agents

capable of performing reliably across a diverse range of tasks.

We demonstrated the real-world applicability of our approach

by deploying the proposed goal-conditioned agents on the

https://hucebot.github.io/extremum_flow_matching_website/
https://hucebot.github.io/extremum_flow_matching_website/
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full-size Talos humanoid robot. The learned vision-based policy

interfaces with a low-level, model-based whole-body controller,

enabling the robot to perform complex manipulations in a

kitchen environment. Notably, the policy was trained using

unstructured, teleoperated play demonstrations. This showcases

the potential of leveraging large-scale, suboptimal datasets to

train more generalist humanoid robots.
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