Enums
ActivationFunctions
LearningTypes
- class prescyent.utils.enums.learning_types.LearningTypes(value)
Bases:
str
,Enum
Method used to generate the MotionDataSample in the dataloaders
- AUTOREG = 'auto_regressive'
Generate pairs with the following behavior, with the expected in points and features and out points and features : - given a time step T, history_size H and future_size F we have: x a sequence of lenght H with the frames = [T-H, .. T] y a sequence of lenght H with the frames = [T-H+1, … T+1]
- SEQ2ONE = 'sequence_2_one'
Generate pairs with the following behavior, with the expected in points and features and out points and features : - given a time step T, history_size H and future_size F we have: x a sequence of lenght H with the frames = [T-H, .. T] y a sequence of lenght 1 with the frames = [T+F]
- SEQ2SEQ = 'sequence_2_sequence'
Generate pairs with the following behavior, with the expected in points and features and out points and features : - given a time step T, history_size H and future_size F we have: x a sequence of lenght H with the frames = [T-H, .. T] y a sequence of lenght F with the frames = [T+1, … T+F]
LossFunctions
- class prescyent.utils.enums.loss_functions.LossFunctions(value)
Bases:
str
,Enum
Map to the required loss function in the torch_module class
- CROSSENTROPYLOSS = 'crossentropyloss'
torch.nn.CrossEntropyLoss
- HINGEEMBEDDINGLOSS = 'hingeembeddingloss'
torch.nn.HingeEmbeddingLoss
- KLDIVLOSS = 'kldivloss'
torch.nn.KLDivLoss
- L1LOSS = 'l1loss'
torch.nn.L1Loss
- MARGINRANKINGLOSS = 'marginrankingloss'
torch.nn.MarginRankingLoss
- MFDLOSS = 'mfdloss'
MeanFinalDistanceLoss
- MSELOSS = 'mseloss'
torch.nn.MSELoss
- MTDLOSS = 'mtdloss'
MeanTotalDistanceLoss
- MTDVLOSS = 'mtdvloss'
MeanTotalDistanceAndVelocityLoss
- NLLLOSS = 'nllloss'
torch.nn.NLLLoss
- TRIPLETMARGINLOSS = 'tripletmarginloss'
torch.nn.TripletMarginLoss
Profilers
- class prescyent.utils.enums.profilers.Profilers(value)
Bases:
str
,Enum
Map to a pytorch_lightning.profilers in the lightnin predictor
- ADVANCED = 'advanced'
pytorch_lightning.profilers.AdvancedProfiler
- SIMPLE = 'simple'
pytorch_lightning.profilers.SimpleProfiler
- TORCH = 'torch'
pytorch_lightning.profilers.PyTorchProfiler