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Abstract—This paper presents Words2Contact, a language-
guided multi-contact placement pipeline leveraging large
language models and vision language models. Our method
is a key component for language-assisted teleoperation and
human-robot cooperation, where human operators can instruct
the robots where to place their support contacts before
whole-body reaching or manipulation using natural language.
Words2Contact transforms the verbal instructions of a human
operator into contact placement predictions; it also deals with
iterative corrections, until the human is satised with the contact
location identied in the robot’s eld of view. We benchmark
state-of-the-art LLMs and VLMs for size and performance
in contact prediction. We demonstrate the effectiveness of the
iterative correction process, showing that users, even naive,
quickly learn how to instruct the system to obtain accurate
locations. Finally, we validate Words2Contact in real-world
experiments with the Talos humanoid robot, instructed by
human operators to place support contacts on different locations
and surfaces to avoid falling when reaching for distant objects.

I. INTRODUCTION

Humanoid robots can use various body parts to create

support contacts to help balance when reaching for difcult

positions. For example, they can use their right hand as a

support on a table, bend forward and reach a cup that would

otherwise be out of reach (Fig. 1); or they can lean on the

counter with their left hand to reach for a dish in the bottom

rack of a dishwasher to prevent falling. Solving these tasks

autonomously is usually done with multi-contact whole-body

planners and controllers [1, 2].

Recent advances in whole-body control using quadratic

programming have shown that both torque-controlled robots

[3] and position-controlled robots with force/torque sensors

[4] can effectively utilize additional contact points to increase

their manipulability and improve their balance, but these

control methods require the prior knowledge of the contact

locations. This information is usually the output of a contact

planning algorithm, where typically a planner decides a

sequence of contact locations that enable the robot to solve

its task (e.g., walking, manipulating a complex object) [5].

Contacts computation usually relies on visual or 3D percep-

tion and environment models to look rst for suitable contact

surfaces, before deciding whether they are kinematically

feasible for the robot. For example, it is common to look

for at areas to place the footsteps in humanoid walking [6].
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Fig. 1: Talos executes the user’s verbal instructions to (1)

lean on a book and (2) reach for an inaccessible cup, yet

in its eld of view, using our Words2Contact pipeline.

Unfortunately, selecting contacts, especially when applying

forces, often requires an understanding of the world that

can hardly be modeled. Some surfaces might be at, but

too fragile for support, like a glass window. Other surfaces

might be off-limits for safety reasons, like the wing of an

aircraft, or they might be slippery, dirty, or unstable. Overall,

in many real-world situations, the choice of support contacts

is likely to require human expertise at some point to be

deployed outside of a laboratory. Giving the power to human

experts to guide the robot and choose the contact locations

for them is therefore a very desirable feature.

Human guidance in contact selection is ideal for

teleoperated robots in remote maintenance or hazardous

scenarios and for collaborative robots cooperating and

working side-by-side with humans. For example, a remote

operator could instruct the robot to place one end-effector on

a wall to lift one foot, and a factory worker could instruct the

robot to reach a handle with one end-effector and take a fallen

tool with the other one. In these situations, language-based

instructions provide a natural communication channel and free

the hands of the operator, nor do constrain the human worker

to use computer interfaces to instruct the robot on what to do.

Giving instructions in natural language has long been

a dream of the robotics community [7, 8, 9]. For years,

this goal eluded researchers due to two main challenges:

(1) understanding what a sentence means requires a good

intuition of the context and the implicit knowledge, that
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is, some “common sense” (2); there are countless ways of

expressing the same instruction, which prevents the use of

simple keywords. To give an illustration, some people might

refer to the “Handbook of Robotics” of Fig. 1 as “the big

red book”, “the book”,“the book next to your right hand”,

“the red thing”, “the big thing in front of you”, and so on.

Large Language Models (LLMs) [10] might be on the verge

of solving these challenges for robotics [11], providing a way

to give natural and general instructions to robots. Trained

on billions of human-written texts, LLMs exhibit a form of

“common sense” that allows them to interpret instructions

with their most likely meaning. They are also, perhaps

surprisingly, highly versatile, as they are capable of handling

instructions or situations not anticipated by the robot designers.

Additionally, LLMs naturally process the many ways humans

express similar concepts, as they are represented by similar

“embeddings”. Visual Language Models (VLMs) are equally

appealing, as they can link text to images and vice-versa.

In this paper, we harness the power of Foundation Models

(LLMs and VLMs) to instruct a humanoid robot about desired

contact locations for increased support in whole-body reach-

ing, an essential skill for solving several downstream tasks.

The robotics community has been working intensely on

integrating LLMs with robots since the rst demonstrations of

ChatGPT (2022). The key challenge is connecting perception,

which is continuous, structured, and high-dimensional, to

language, which is linear and loosely structured, and then

to actions, which are also continuous and depend on the

specic robot. While many approaches have been proposed

(see Sec. II-B), there is currently no consensus on how to

establish this link in the general case.

We present the following key contributions:

• Words2Contact: a novel pipeline integrating LLMs

and VLMs with a multi-contact whole-body controller

to identify support contacts from verbal instructions.

• A benchmark of state-of-the-art LLMs and VLMs for

contact prediction.

• A pilot study showing that users quickly learn to use

our system to identify accurate contact locations.

• Validation of our system on a real Humanoid Robot.

To the best of our knowledge, this paper is the rst to address

support contact identication from verbal instructions using

Foundation Models and demonstrate it with a humanoid robot.

II. RELATED WORK

A. Multi-contact whole-body Control

Whole-body controllers are typically formalized as a QP

problem with the minimization of a weighted sum of quadratic

functions each time-step t [12], under several constraints:

q∗(t)=argmin
q(t)



i

wi∥ci(t)∥
2

s.t.



dynamics/kinematics

joint, torque, velocity limits

where each ci(t) is a cost function i at time-step t (often

called a task), for instance the Euclidean distance between the

left hand and its desired position, the distance of the center

of mass to the desired position, the head’s orientation etc.

Depending on the robot’s control formulation, the

optimization variables q can be the joints’ torque, velocity,

or angular position. When multiple contacts are involved,

torque control is ideal to directly set the interaction forces

and wrenches [3]. Nevertheless, torque control requires both

a torque-controlled robot, and an accurate dynamic model.

Impedance control can be an alternative to distribute the

forces among contacts, but it requires modeling the actuators

and lot of parameter tuning [13].

In our recent work, we introduced a unied formulation for

whole-body multi-contact control [4], for position-controlled

robots to distribute and control the contact forces. The core

idea is to utilize the exibility that stems both the mechanical

bending of the robot and the non-perfect joint position

controllers. By modeling this exibility, the joint position

commands and the contact forces can be connected, allowing

the controller to regulate these forces by incorporating them

in the quadratic programming formulation. In this paper,

we use this multi-contact whole-body controller to perform

experiments with the Talos humanoid robot [14].

B. Robotics and Language Models

Prior to the introduction of LLMs, numerous approaches in

both language comprehension and generation were explored

in robotics [8, 15]. However, these early methods were

limited due to their reliance on rigid, rule-based systems and

predened vocabularies [9].

Thanks to their training on a very large dataset, LLMs

can answer to a very large set of natural language queries

without having been trained on any specic domain.

In particular they can provide high-level plans with some

“common sense” by inferring many pieces of context, thus

bypassing most of the “frame problem” [16]. In robotics,

by using well-designed “prompts” that explain the problem

to be solved in natural language and the kind of expected

output, LLMs were used to nd a sequence of pre-learned

behaviors [17, 18], generate Python code to be executed

by the robot [19, 20], or cost functions for a model-based

controllers [21]. For example, “Inner Monologue” [22] uses

the ability of LLMs to generate task plans and explores

embodied reasoning through self-dialogue. “Code-as-Policies”

[20] uses the code generation abilities of LLMs to inform

robotic policies directly from natural language descriptions

without the need for further training.

In some cases where the desired structure of the output is

in a form that LLMs are not inherently able to generate, or if

the nature of the problem requires more complex responses,

additional ne-tuning may be useful [23, 24, 25]. For example,

in “BTGenBot”, behavior trees are generated through LLMs

that have been ne-tuned on specialized datasets. The key

takeaway is that a well-structured output is benecial to

transition from non-structured high-level instructions to low-

level control commands. The drawback of ne-tuning is that

it requires large amounts of data, which is time-consuming



Fig. 2: Words2Contact overview: (1) The user provides the rst instruction. The Module Selector (Sec. III-B) classies

it as “Prediction”. The Prediction Module (Sec. III-C) integrates the user input and the robot’s RGB data to predict a

new contact point. (2) The user wants to adjust the predicted contact; their instruction is classied as “correction”. The

Correction Module (Sec. III-D) adjusts the previous prediction based on the new user input and the RGB data. (3) The

user conrms the corrected contact location: the instruction is classied as “Conrmation”. The Control Module (Sec. III-E)

uses the PointCloud, the initial user prompt and the desired contact location to compute the desired 3D contact task, later

executed by the SEIKO Multi-Contact whole-body controller.

and resource-intensive to collect, and may introduce biases

based on how the data are collected or generated [26].

Even though the generated plans are often successful, the

ability to use language-based corrections to x the generated

plans generated with minor adjustments during task execution

can be very useful. For example, Sharma et al. [27] present

a model that integrates natural language and visual feedback

to adjust robot planning costs in real-time, enabling more

dynamic and responsive adaptation to new tasks. LILAC [28]

proposes a shared autonomy paradigm that updates the control

space in response to continuous user corrections. DROC

[29] further advances this paradigm by enabling LLM-based

robot policies to respond to, remember, and retrieve feedback

efciently, signicantly improving adaptability to natural

language instructions. Overall, a correction mechanism that

understands general and abstract corrections, such as “a

bit to the right”, is essential to ensure the reliability and

effectiveness of robotic systems guided by LLMs.

Instead of relying on LLMs solely trained on language,

an alternative idea is to use the same learning architectures

as LLMs (transformers), but train them on multi-modal

robotics data instead of pure text, like in the Robotics

Transformers (RT) line of work [30]. A more popular and

less compute-intensive approach is to use similar large-scale

robotics datasets and incorporate pre-trained language and

vision models with a few trained layers to connect the

components. OpenVLA [31] uses this approach with small

open-source models (7-billion parameters), highlighting the

potential for substantial achievements with smaller models.

Regarding humanoid robots, recent research has focused

on generating human-like motions from text descriptions,

specically through animation using simulated human-like

articulated models [32, 33]. However, for the problem of

multi-contact planning, we are only aware of a traditional (pre-

LLMs) language processing-based approach, where an n-gram

language model is employed. The goal of this model is to learn

motion as a sequence of transitions, where each word repre-

sents a shape pose, and each sentence represents a motion [9].

III. METHODS

The Words2Contact pipeline (Fig. 2) unfolds as follows:

visual feedback is streamed to the user, who starts by instruct-

ing the robot to place a contact in a specied location. The

initial prediction resulting from this instruction is displayed to

the user. If dissatised, the user can either correct the predic-

tion or provide a different instruction until they conrm satis-

faction with the updated predicted target. Once the contact lo-

cation is conrmed, the robot proceeds to execute the contact

placement at the specied point using the SEIKO controller.

To achieve this, we split the contact prediction task into

three sub-modules, each responsible for a specic sub-task:

Prediction, Correction, and Conrmation. This split is

crucial for ensuring that even small models will be able to

effectively handle each stage of the pipeline.

A. Prompting LLMs

We use a single LLM and dynamically adjust the system

prompt (Fig. 3) at each step of the pipeline. Furthermore, out-

puts from the LLM are constrained to JSON format to ensure a

desired structure that simplies information extraction, in the

open source models we enforce this constraint with grammar-

based token sampling and acceptance [34], whereas for the

proprietary model we follow the documentation instructions1.

For readers unfamiliar with LLMs, we want to stress

the difference between the system prompt and the user

prompt. The system prompt is an instruction or message

given to the LLM to guide its responses. This prompt sets the

tone, context, and boundaries for the conversation, helping

the model understand its role and what is expected of it.

Considering the constraints of the task, each module has its

own system prompt for the LLM. Examples of system prompts

are shown in Fig. 3. The user prompt, instead, is the input or

query provided by the user to the LLM in natural language.

1OpenAI Docs: https://tinyurl.com/openaijson



Fig. 3: Some examples of system prompts that are utilized

by the LLM in our modules. “+5 examples” refers to

the 5 examples that are added to the system prompt, as

part of the few-shot prompting technique. All the system

prompts are available at: https://hucebot.github.

io/words2contact_website/.

B. Module Selector

The Module Selector (Fig. 2) interprets the user’s natural

language prompt and classies it into one of three categories:

Prediction, Correction, or Conrmation.

This classication is achieved by combining two key

techniques: few-shot prompting [35] and logits bias2.

Few-shot prompting involves providing a system prompt that

describes the task that the LLM has to perform, accompanied

by examples to guide it in classifying new inputs correctly.

For this, and all the following modules, we use 5-shot
prompting, i.e., we provide ve examples. Logits bias is a

technique used to adjust the output probabilities of logits,

specically for terms such as ‘Prediction’, ‘Correction’, and

‘Conrmation’. This adjustment aims to prioritize the correct

classication of inputs into one of these three categories.

C. Prediction Module

To interpret the desired location implied by the user, we

need to have a system that leverages both natural language

instructions and visual state feedback. The Prediction module

(Fig. 4) combines both Vision Language (VLMs) and a

Large Language Model (LLM). We assume that there are

two cases of positions that the user might refer to:

1) Absolute Positions: For prompts specifying a contact

that is on an object (e.g., “place your hand on the

book”).

2) Relative Positions: For prompts where the contact

is expressed in terms of its spatial relation to the

object(s) (e.g., “left from the box”, “between the cup

and the bowl”).

The Prompt Analyzer is responsible for (a) identifying

which of the two scenarios the prompt is relevant to and (b)

2OpenAI Article: https://tinyurl.com/openailogitbias

isolating the object’s descriptions mentioned in the prompt

so that they can be passed to the VLMs. For complex

tasks that involve common sense and math reasoning,

chain-of-thought prompting, where the LLM is asked to

provide its thought process before reaching a conclusion,

has proven to be benecial [36]. We combine few-shot

prompting and chain-of-thought reasoning, to achieve better

results (see the prompt on Fig. 3-a).

In the case of Absolute Positions (Case 1 in Fig. 4), we

use the capability of language-grounded segmentation models

to segment images based on natural language descriptions.

This allows the system to detect the object regardless of how

they are referenced by the user, overcoming the limitations

of classic pre-trained segmentation models that either retrieve

a mask based on a pre-trained set of labels or return a

segmentation of an image without any labeling. CLIPSeg [37],

for example, addresses this problem by extending a CLIP

model [38] with a transformer-based decoder. Once we

obtain the segmentation heatmap for the requested object,

we determine the coordinates of the contact point in image

space using the following metric: [imax,jmax]=argmaxi,jHij ,

where H is the heatmap produced by the language-grounded

segmentation model, up-scaled to the size of the original

image. While a more sophisticated point sampling technique

could be chosen to ensure sufcient space coverage, such

considerations are beyond the scope of this work.

In the case of Relative Positions (Case 2 in Fig. 4), we

utilize spatial relationships derived from the visual scene and

the verbal instruction to determine the contact location. To

achieve this, following the same intuition as in the rst case,

we extract the bounding box(es) using pre-trained open-set ob-

ject detection [39]. Similarly to grounded segmentation, these

models are trained using bounding box annotations and aim

at detecting arbitrary classes with the help of language gener-

alization. The representation of a bounding box using natural

language is straightforward and thus motivates our approach.

For instance, in case 2 of Fig. 4, after we receive a bounding

box for the cup, we build the following prompt: “Cup is at

[100,150] with width=120 and height=90. Place your hand

left from the cup.” The system prompt (Fig. 3-b) contains

some basic information about the representation we are follow-

ing. Additionally, we provide a few examples to ensure that

the LLM will accurately interpret the spatial instruction accu-

rately, and will calculate the nal contact position successfully.

Furthermore, instead of directly outputting a numerical value,

the LLM outputs a mathematical expression which is then

parsed and calculated using a Python parser. This choice was

made because, in preliminary experiments, we noticed a per-

formance increase of around 10% when using this approach in-

stead of having the LLM perform the computation on its own.

D. Correction Module

When dealing with humanoid robots and contacts,

precision is of high importance. The Correction module

(Fig. 5) enhances the Words2Contact pipeline by allowing

for both minor and major corrections. Similarly to the second

scenario of the Prediction Module, we detect the object(s)



Fig. 4: The Prediction Module (Sec. III-C): the Prompt-Analyzer is an LLM that analyzes the user’s prompt and returns

a JSON le with the chain of thought, list of objects, and position type (absolute or relative). For absolute positions, a

point is extracted via language-grounded segmentation. For relative positions, a language-grounded object detection VLM

detects bounding box(es), used by the LLM to predict the contact point.

Fig. 5: In the Correction Module (Sec. III-D) the LLM

detects object descriptions in the user prompt, the VLM

identies their bounding boxes, and then uses them along

with the current target position, interaction history, and the

user’s instruction to determine a new candidate contact [i,j].

stated in the user prompt, and then we retrieve their bounding

boxes. The main difference is that in the system prompt we

mention that the goal now is to correct a user-given position,

and in the nal user prompt, we include the current target

position. Another important point to specify is stating a

correction that includes an object (e.g., “Move closer to the

cup.”) is optional, and we even support prompts of the form:

“Move the target a bit to the right.”. Finally, to provide a

more natural interaction with the correction module, we

include the conversation history, which allows the operator to

make corrections relevant to the previous ones, for example

“Move to the right.”, “Now, move twice as much as before.”.

E. Control Module

Once the user conrms that they are satised with the

current contact point shown to them in image space, we query

the LLM one nal time, with the end-effector selector prompt

(Fig. 3-c), to select the robot’s end-effector that will be used

for contact (e.g., right or left hand) and the task type (e.g.,

support contact or reaching). Then, we extract the 3D position,

in camera frame pcam=[x,y,z]cam, from the point cloud.

The Control Module then relies on the SEIKO Retargeting

[40, 41] and Controller [4] to gure out the commanded

motion and smoothly establish the new contact.

The SEIKO Controller takes as input the discrete selection

of the end-effector (EE), as well as the 3D position of

the selected contact point [i, j] in camera frame pcam =
[x,y,z]cam. It transforms it into a position in the robot’s world

frame: prob=orob
cam+Rr

campcam. A spline-based Cartesian

trajectory, starting from the current position xEE
t at time t,

brings the end-effector EE to the desired contact point prob.

SEIKO Retargeting uses a model-based Sequential Quadratic

Programming (SQP) optimization to compute feasible

whole-body congurations (joint positions and contact forces)

that track the Cartesian effector pose commands. The contact

forces are automatically determined by the optimization

problem of SEIKO, so only the contact locations are

necessary, to enforce safety and balance constraints

SEIKO Controller integrates an explicit model of joint

exibility and employs an SQP whole-body admittance for-

mulation to regulate contact forces on our position-controlled

humanoid robot. This controller is crucial for performing the

distant reaching tasks that challenge the system’s balance,

as it enhances robustness against model errors.

IV. EXPERIMENTS & RESULTS

A. Evaluation of contact prediction using pre-trained models

In this experiment, we benchmark several state-of-the-art

pre-trained models (VLMs and LLMs): the goal is to select

the best combination for our pipeline, evaluating the impact of



Fig. 6: In the Control Module (Sec. III-E), the SEIKO

Controller commands the robot to realize the desired task

with the selected end-effector at the desired contact position.

“Step in the manhole cover” “Reach for the door handle”
“Lean between the brush
and the measuring tape”

Fig. 7: Selected records from our dataset. The yellow masks

indicate acceptable contact areas for each given prompt.

the type of model and its size (i.e., the number of parameters)

on the prediction performance (mapping user inputs to pixels).

To this purpose, we created a new dataset3, with 78
tuples of images (1280×720 pixels), prompts, and manually

annotated masks corresponding to the area that satises the

described contact. The dataset has both indoor and outdoor

images, contains different ways of requesting contacts (e.g.,

lean, place), different end-effectors (e.g., hand, foot), and an

even distribution of relative and absolute positions (Fig. 7).

To evaluate the performance of the prediction module

and assess the impact of the LLM size, and the VLM

choice on the performance of our pipeline, we evaluate the

success rate of each combination of several models: For

the LLMs, we test Calme-7b-Instruct, mixtao-7bx2-moe

and GPT-3.5-turbo. While for the VLM segmentation we

chose CLIPSeg [37] and CLIP Surgery [42], and for the

object detection GroundingDINO [39] and Florence-2 [43].

Random selection was also used to establish a baseline.

The results (Tab. I), show that all the combinations outper-

form the random point sampling, and that the best combina-

tion of models (gpt3.5+GroundingDino+ClipSeg) selects ap-

propriate contacts in about 70% of the absolute cases and 50%

of the relative cases. One key nding is that breaking down

larger tasks into smaller subtasks enables smaller models to

achieve a success rate comparable to larger models, despite

their signicantly reduced size. This suggests that task struc-

turing can be a valuable strategy in optimizing model perfor-

mance, especially when computational resources are limited.

B. Pilot Study - Evaluation of the correction mechanism and

usability of the pipeline

To evaluate the performance and usability of our system,

we conducted a pilot study with 11 volunteer participants (9
male, 2 female, aged 26.27±1.8 y.o., min 24, max 30). All

3The dataset can be downloaded from our website: https:

//hucebot.github.io/words2contact_website/

Fig. 8: Results of the pilot study: all the participants were

able to bring the predicted contact close to the target in a few

iterations with our system, exhibiting quick learning, both

with and without prompt expert guidance. The correction

mechanism is very effective in achieving accuracy in contact

placement, which is critical for real robot applications.

participants had no prior experience with our system. The

pilot study was structured in two phases.

In the rst phase, participants were presented with a set

of 10 images, randomly sampled from the same dataset as

in Sec. IV-A. Each image displayed a random target marked

with a circle of 18 pixels radius; the participant’s task was to

tell the system how to accurately place a point, marked with

another circle of 5 pixels radius, on the designated target

using a maximum of 5 prompts. Each participant received

minimal instructions and, notably, was not informed about

the existence of the correction module.

In the second phase, we provided participants with

an explanation of the system’s functionalities, including

two examples of prediction sentences and two correction

sentences. With this new knowledge, they instructed the

system to identify 10 targets on 10 different images.

We measured the distance between the predicted point

and the target across prompts, as the distance between the

centers of the two circles. The results (Fig. 8) demonstrate a

signicant improvement in task performance in both phases:

all the users quickly learned how to use the system, and

were able to bring the point close to the target with few

corrections. Their performance was, as expected, better after

the prompt expert suggestions (the median distance at the

5th prompt is 21 pixels, which is comparable with the target

circle radius). The ability to accurately reach the target in

a few iterations conrmed that the prediction-correction

mechanism of Words2Contact is efcient and adequate to

be used for precise contact identication, which is critical for

using this system with real robots. Furthermore, participants

reported engagement and satisfaction in using the system.

C. Real Robot experiment

We evaluated Words2Contact with the Talos humanoid

robot [14] in four distinct whole-body reaching settings

(Fig. 9), with and without corrections, with the following

user prompts p :



TABLE I: Success rate of each combination of foundation models.

Combination Success Rate

LLM VLM ObjectDetection VLM Segmentation
absolute relative overall

median [25%, 75%] median [25%, 75%] median [25%, 75%]

Calme-7b-Instruct Florence-2 CLIPSeg 0.67 [0.66, 0.68] 0.39 [0.39, 0.4] 0.54 [0.39, 0.66]
Calme-7b-Instruct Florence-2 CLIP Surgery 0.43 [0.42, 0.45] 0.42 [0.41, 0.43] 0.42 [0.42, 0.45]
Calme-7b-Instruct GroundingDINO CLIPSeg 0.71 [0.7, 0.71] 0.46 [0.45, 0.48] 0.59 [0.47, 0.71]
Calme-7b-Instruct GroundingDINO CLIP Surgery 0.45 [0.43, 0.45] 0.46 [0.43, 0.48] 0.45 [0.43, 0.47]

mixtao-7bx2-moe Florence-2 CLIPSeg 0.66 [0.63, 0.69] 0.34 [0.34, 0.36] 0.51 [0.34, 0.64]
mixtao-7bx2-moe Florence-2 CLIP Surgery 0.43 [0.42, 0.45] 0.36 [0.33, 0.39] 0.42 [0.36, 0.45]
mixtao-7bx2-moe GroundingDINO CLIPSeg 0.66 [0.65, 0.68] 0.41 [0.39, 0.42] 0.53 [0.41, 0.66]
mixtao-7bx2-moe GroundingDINO CLIP Surgery 0.42 [0.41, 0.43] 0.45 [0.41, 0.47] 0.42 [0.41, 0.45]

gpt-3.5 Florence-2 CLIPSeg 0.74 [0.72, 0.74] 0.39 [0.38, 0.39] 0.55 [0.39, 0.73]
gpt-3.5 Florence-2 CLIP Surgery 0.42 [0.41, 0.45] 0.34 [0.34, 0.39] 0.41 [0.36, 0.44]
gpt-3.5 GroundingDINO CLIPSeg 0.71 [0.68, 0.74] 0.5 [0.5, 0.53] 0.61 [0.51, 0.7]
gpt-3.5 GroundingDINO CLIP Surgery 0.45 [0.43, 0.46] 0.53 [0.5, 0.54] 0.47 [0.45, 0.51]

Results using Random Point Sampling 0.12 [0.08, 0.14] 0.17 [0.11, 0.21] 0.13 [0.1, 0.18]

(a) 1 “Place your right hand on top of the book” 2 “with

your left hand, reach for the cup”.

(b) 1 “Using your right hand, lean on top of the white

surface” 2 “reach for the red plate, with the left hand”.

(c) 1 “Place your right hand right from the thing with

the wooden handle” (this is a mallet, but the user might

not know the name); operator’s correction to avoid a

collision: 2 “Move more to the right”; 3 “Reach for

the nail box, with your left hand”.

(d) 1 “Place your right hand on the white cloth”; 6

corrections 2 - 7 guide the target, as the setting lacks

distinct objects for relative positioning; 8 “with the left

hand, reach the cheez it box”.

We highlight that the operator completed all the tasks

using paraphrases to describe objects (“thing with a wooden

handle”) and rare names (“cheez it box”). The robot always

performed the task successfully.

Video/Code/Dataset: The video of the robot experiments,

the dataset of Sec. IV-A and the software to reproduce

Words2Contact are available at https://hucebot.

github.io/words2contact_website/.

V. CONCLUSIONS & FUTURE WORK

We introduce Words2Contact, a pipeline for language-

guided multi-contact placement for humanoid robots that

leverages VLMs and LLMs to interpret verbal commands:

this is a powerful tool for teleoperated and collaborative robots.

Words2Contact is effective even with small open-source mod-

els without ne-tuning. In a pilot study, we show that humans

quickly learn to use the system; real robot experiments show

that the system provides satisfactory contacts even in difcult

environments, thanks to the iterative correction mechanism.

Ongoing work is focused on evaluating the impact of the

prediction errors on downstream tasks. Future work will

improve the contact prediction using insights from Visual

Question Answering (VQA) to better handle abstract spatial

concepts (“a bit, a little more”) and link corrections to

physical quantities. Additionally, we plan to inform the

Contact Prediction with the robot’s dynamics model:
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